Declarative Machine Learning Without The Operational Overhead Using Continual

Data Engineering Podcast

0:00
01:11:51
10
10

Declarative Machine Learning Without The Operational Overhead Using Continual

Data Engineering Podcast

Building, scaling, and maintaining the operational components of a machine learning workflow are all hard problems. Add the work of creating the model itself, and it's not surprising that a majority of companies that could greatly benefit from machine learning have yet to either put it into production or see the value. Tristan Zajonc recognized the complexity that acts as a barrier to adoption and created the Continual platform in response. In this episode he shares his perspective on the benefits of declarative machine learning workflows as a means of accelerating adoption in businesses that don't have the time, money, or ambition to build everything from scratch. He also discusses the technical underpinnings of what he is building and how using the data warehouse as a shared resource drastically shortens the time required to see value. This is a fascinating episode and Tristan's work at Continual is likely to be the catalyst for a new stage in the machine learning community.
Episodes
Date
Duration
Recommended episodes :

Experimentation and A/B Testing For Modern Data Teams With Eppo

Data Engineering Podcast

Data Driven Hiring For Data Professionals With Alooba

Data Engineering Podcast

Creating A Unified Experience For The Modern Data Stack At Mozart Data

Data Engineering Podcast

The podcast Data Engineering Podcast has been added to your home screen.

Building, scaling, and maintaining the operational components of a machine learning workflow are all hard problems. Add the work of creating the model itself, and it's not surprising that a majority of companies that could greatly benefit from machine learning have yet to either put it into production or see the value. Tristan Zajonc recognized the complexity that acts as a barrier to adoption and created the Continual platform in response. In this episode he shares his perspective on the benefits of declarative machine learning workflows as a means of accelerating adoption in businesses that don't have the time, money, or ambition to build everything from scratch. He also discusses the technical underpinnings of what he is building and how using the data warehouse as a shared resource drastically shortens the time required to see value. This is a fascinating episode and Tristan's work at Continual is likely to be the catalyst for a new stage in the machine learning community.
Subscribe Install Share
Data Engineering Podcast

Thank you for your subscription

For a better experience, also consider installing the application.

Install